Active Build-Model Random Forest Method for Network Traffic Classification
نویسندگان
چکیده
Network traffic classification continues to be an interesting subject among numerous networking communities. This method introduces multi-beneficial solutions in different avenues, such as network security, network management, anomaly detection, and quality-of-service. In this paper, we propose a supervised machine learning method that efficiently classifies different types of applications using the Active Build-Model Random Forest (ABRF) method. This method constructs a new build model for the original Random Forest (RF) method to decrease processing time. This build model includes only the active trees (i.e., trees with high accuracy), whereas the passive trees are excluded from the forest. The passive trees were excluded without any negative effect on classification accuracy. Results show that the ABRF method decreases the processing time by up to 37.5% compared with the original RF method. Our model has an overall accuracy of 98.66% based on the benchmark dataset considered in this paper. Keyword-Network Traffic Classification, Machine learning, Supervised Learning, Random Forests Algorithm
منابع مشابه
Classification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملImplementation of Random Forest Algorithm in Order to Use Big Data to Improve Real-Time Traffic Monitoring and Safety
Nowadays the active traffic management is enabled for better performance due to the nature of the real-time large data in transportation system. With the advancement of large data, monitoring and improving the traffic safety transformed into necessity in the form of actively and appropriately. Per-formance efficiency and traffic safety are considered as an im-portant element in measuring the pe...
متن کاملPredicting the Next State of Traffic by Data Mining Classification Techniques
Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear patterns, these systems ...
متن کاملA Random Forest Estimator Combined With N-Artificial Neural Network Classifiers to Optimize Network Intrusion Detection
Information systems have become more complex and highly interconnected. While ensuring real-time connectivity, these systems encounter an increasing amount of malicious traffic. Hence the need to establish a defense method. One of the most common tools for network security is intrusion detection and prevention systems (IDPS). An IDS, while supervising the incoming traffic, tries to identify sus...
متن کاملStudy of Tree Base Data Mining Algorithms for Network Intrusion Detection
Internet growth has increased rapidly due to which number of network attacks have been increased. This emphasis importance of network intrusion detection systems (IDS) for securing the network. It is the process of monitoring and analyzing network traffic for detecting security violations many researcher suggested data mining technique such as classification, clustering ,pattern matching and ru...
متن کامل